Advanced Networkmetrics:
v Q Interpretable Machine Learning for Intelligent Communication Systems

Getting started with the Data Analysis
as a Service (DAaaS)

Contact person: José Camacho
Last modification: 22/05/2023

1 Introduction

In this document the architecture of the Data Analysis as a Service (DAaaS) is introduced and
an example of data workflow is explained in detail.

1.1 Server Architecture

This section briefly describes the Data Analysis as a Service architecture. This information is
detailed in the Deliverable 7 (in Spanish) of project ANIMaLICoS [1], accessible on the project
website.

Data Analysis as a Service

Data Analysis

° ® Q n
Ju pyter

N
Front End .

MEDA Toolbox FCParser
d‘ docker

Figure 1: Diagram of the Data Analysis as a Service.

First, the DAaaS basis is a container manager, Docker. The DAaaS itself is a Docker container.
So far the container is not available onlie, but it can be provided on-request. The container
provides an installation of JupyterHub. In the notebook, we have installed, on the one hand,
the FCParser [2], a library that allows a general and highly configurable parsing of data from
different sources, and on the other hand, Octave and MEDA Toolbox(Multivariate Exploratory
Data Analysis Toolbox)[3], which is a set of multivariate analysis tools for the exploration of
datasets.

2 Example of DAaaS usage

2.1 Server access

First of all, you have to access the server at https://jcp.ugr.es:8000/hub/login. If you don’t have
an account yet, you have to sign on with a new account and contact the administrator (J. Cama-

* GOBIERNO MINISTERIO

'Q DE ESPANA DE CIENCIA
; E INNOVACION
. 1

mailto:josecamacho@ugr.es
https://codas.ugr.es/animalicos/en/doc/deliverable7.pdf
https://jcp.ugr.es:8000/hub/login
mailto:josecamacho@ugr.es
mailto:josecamacho@ugr.es

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

cho) providing your username, real name and organization.

A Noseguro | jep.ugr.es:8000/hub/login

— Jupyterhub Login

Warning: JupyterHub seems to be served
over an unsecured HTTP connection. We
strongly recommend enabling HTTPS for
JupyterHub.

Username:

Password:

Don't have an account? Signup!

Figure 2: Data Analysis as a Service access.

2.2 Dataset

Before starting with the example, we need to know what data is going to be analyzed and where
it is located. The dataset that is going to be used is UGR’16 Dataset [4], which is built with real
traffic and up-to-date attacks. These data come from several netflow v9 collectors strategically
located in the network of a Spanish ISP. It is composed of two differentiated sets of data that
are previously split in weeks : calibration (from March to June of 2016) and fest (from July to
August of 2016). For more information, refer to the reference above or click on the link. The
actual data used by the server has been updated to a new nfdump version.

For this example, we are going to use a small portion of the data, since the total trace includes
close to 6 months of traffic. These files are very large and we would need a lot of computing
resources to process and analyze them. We have selected a time window of one hour in which
there is interesting activity. However, starting from this example, the interested users may carry
out a wider analysis.

The period that has been selected is the day 13/04/2016 from 3am to 4am. The data of the cap-
ture is stored in

april_week3_nfcapd, that is the collected binary netflow file of the week. In order to process the
data we must extract one hour of that day and pass it to csv” format. To do this we have used
nfdump with the following command:

nfdump -r nfcapd_week3_capd -t 2016/04/13.03:00:00-2016 /04 /13.04:00:00 -q -N -0 "csv’ > nf_1304.csv

w = GOBIERNO MINISTERIO
" DE ESPANA DE CIENCIA
: E INNOVACION

1
wie.

mailto:josecamacho@ugr.es
mailto:josecamacho@ugr.es
mailto:josecamacho@ugr.es
https://nesg.ugr.es/nesg-ugr16/
https://nesg.ugr.es/nesg-ugr16/april_week3.php#INI

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

2.3 Jupyter Notebook interface

We also need to know the enviroment that we are going to use for the example. This section
will show where we are going to use the tools and the main files we need to know.

: File Edit View Run Kernel Tabs Settings Help

[Bt c 2 Launcher +
\ a
example
o 8 / example / P
= Name - Last Modified E Notebook
B config 19 hours ago
* B8 deparsing_output a day ago S
B deparsing_output_60 19 hours ago P - Octave notebook + MEDA Toolbox I
] parsing_output 2 days ago
[dataraw_datacsv.sh 20 days ago Python 3 Octave
(ipykernel)
D deparsing_input a day ago
[deparsing_input_60 19 hours ago
I [M] example.ipynb 19 hours agol Console

| H nf_1304_34.csv 20 days ago |
[parsed_datamat 2 days ago P n
[prepare_datam 15 days ago ﬁ

Python 3 Octave
(ipykernel)

= M 2 =

Terminal Text File Markdown File Python File Show Contextual
Help

Figure 3: Jupyter Notebook interface.
e nf_1304_34.csv : capture of traffic used.
e Python3 + FCParser : parsing data.
e Octave notebook + MEDA Toolbox: data analysis.

e example.ipynb : notebook with commands for the example done.

2.4 Parsing data with FCParser

The first step is to parse the data so that we will extract features from a data set in order to process
and interpret them in a more simplified way. All this, starting from a set of decisions that the
analyst needs to make. In the example, we use predefined setting for most of this decisions.

For this purpose, as indicated in the previous section, we will make use of the FCParser tool,
which is a parser for data streams composed of various (structured and unstructured) sources.
This tool converts variables into feature observations to facilitate further analysis, using the Fea-
ture as a Counter (FaaC) approach [2]. Then it aggregates the observations according to specific
criteria and fuses the observations from different data sources. For more information and in-
stallation help, refer to github.com/josecamachop/FCParser.

First we start by defining the features that we want to extract (count) from the traffic capture.
For this purpose we have used the netflow.yaml file (located in the config folder) in which 142
features have been defined, such as source/destination ports or IPs, which will be useful for

"5 ¥ GOBIERNO MINISTERIO
' 7> DEESPANA DE CIENCIA
E INNOVACION

https://github.com/josecamachop/FCParser

Advanced Networkmetrics:

Interpretable Machine Learning for Intelligent Communication Systems

traffic analysis. For example, some features of destination port:

= netflow.yaml X
destination port
- : dport_zero
1 dst_port
: single
H
- : dport_multiplex
: dst_port
» single
01
- : dport_echo
: dst_port
: single
Hav
- : dport_discard
1 dst_port
» single
9
- : dport_daytime
: dst_port
© single
c 13

+

: dport_quote

 dst_port
» single

17
: dpert_chwhereen

» dst_port
: single

19
: dpert_ftp_data

 dst_port
: single

: 28
: dport_ftp_control

» dst_port
© single

21
: dpert_ssh

: dst_port
: single

v 22

Figure 4: Part of netflow.yaml

Then we define the configuration file (configuration.yaml), where we have to indicate apart
from some processing features (CPUs, memory), the data sources and the directory where we

want to save the files of the parsed capture.

In this case, we have used the netflow data source that we have defined before and the traffic
capture nf_1304_34.csv. In processes, we have selected the maximum number of CPUs available.
Finally, the parsing_output folder has been selected as the output where the files will be saved.

configuration.yaml

: config/netflow.yaml

: nf_1384_34.csv

: False
: False
16
: leee
: 8.81
: 8.ea01

X | B example_daas@efcf5d555aai X | +

HEmnty . tiom i o alvred by timect
#EMpty,] regation is made. So, analyzed by tin m
Empty, so no aggregation is made. So, analyzed by timestamp

: parsing_output
: stats.log

Figure 5: Part of configuration.yaml

Finally we run it on the terminal (click on the terminal shown in Figure 3):

python3 |FCParser/bin/fcparser.py config/configuration.yaml

GOBIERNO MINISTERIO
DE ESPANA DE CIENCIA

|
k4
; E INNOVACION

B W N

N

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

Warning: For this 1 hour capture the FCParser takes about 10 minutes to process and get the
output files. The folder including the outputs is already provided. The user can do both : run
it or otherwise use the provided output folder directly.

$ python3 /FCParser/bin/fcparser.py config/configuration.yaml
LOADING GEMERAL COMFIGURATION FILE...
* Offline mode (multiprocess)
* Incremental output: False
* Cores: 16
* Max_chunk: 1888 MB
* Time sampling window: 1 minutes
** Creating output directory parsing output/
** Defining default weights file: ‘weights.dat”
GEMERAL CONFIGURATION FILE... OK
LOADING DATA S0URCES CONFIGURATION FILES...
* File: config/netflow.yaml

Data Sources:
* netflon 15 variables 142 features
TOTAL 142 features
Qutput:
Directory: parsing output/
Stats file: stats.log
Weights file: weights.dat

Elapsed: 1 secs

netflow #1 /1 nf_1384 34
Elapsed: 8 mins, 15 secs

Figure 6: Running FCParser.

If we go to the specified folder (parsing_ouput), we will see that a file has been generated for
each minute of the capture (61 files in this case). We suggest to delete the last file as nfdump
output includes some spurious files with flows that slightly delayed, making the FCParser create
an almost empty final interval. It will alter our analysis.

NOTE: In case of using another traffic capture you would only have to change the configuration.yaml
indicating the data source with the capture and a new output folder in order to mix it and run it again.

2.5 Data analysis with Octave and MEDA Toolbox

In this section, we explain the example of data analysis with PCA (Principal Component Analysis)
given on the DAaaS. Once we have obtained the output folder of our data we can start with its
analysis. First, the user has to open the example given (click on example.ipynb in Figure 3). In
order to use the MEDA-Toolbox, we need to add the directory of the MEDA Toolbox in Octave:

% Make sure we have the MEDA Toolbox installed , so we can add it to the path in
Octave:

addpath (' /MEDA-Toolbox ") ;

addpath (' /MEDA-Toolbox/BigData ") ;

pkg load statistics

2.5.1 Data preparation and initialization

The next step is prepare input data from octave. To do this we will make use of the prepare_data.m
function :

% First , we have to prepare data using the function ’prepare_data.m’
prepare_data ('parsing_output’);

E4 * GOBIERNO MINISTERIO

73 DEESPANA DECIENCIA
; E INNOVACION
=

https://github.com/josecamachop/MEDA-Toolbox

WO =

S

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

I / example / parsing_output / examj
Name - Last Modified E
L3 output-ZU0TeU47130536.dat TU0 minutes ago o

[output-201604130337.dat 10 minutes ago

[output-201604130338.dat 10 minutes ago

[output-201604130339.dat 10 minutes ago '
[output-201604130340.dat 10 minutes ago g
[output-201604130341.dat Im Open I
3 output-201604130342.dat Open With 3
[output-201604130343.dat + Openin New Browser Tab

Y output-201604130344.dat / Rename 0

[output-201604130345.dat % Delete Del

[output-201604130346.dat % Cut Ctrl+X

[output-201604130347.dat) Copy Ctri+C

[output-201604130348.dat] Paste Chri+V [
3 output-201604130349.dat 0 Duplicate Ctrl+D '

[output-201604130350.dat + Download

[output-201504130351.dat

[output-201504130352.dat

O output-201604130353.dat 0 Copy Download Link
[output-201504130354.dat [0 Copy Path

[output-201504130355.dat
[cutput-201504130356.dat
[cutput-201504130357.dat
[output-201504130358.dat
[output-201504130359.dat

[output-201604130400.dat 10 minutes ago [yl

[stats.log 10 minutes ago

W Shut Down Kernel

)
V]

Copy Shareable Link

MNew File

MNew Notebook

B m

MNew Folder

[weights.dat 18 minutes ago

Figure 7: Deleting last output of the folder.

% coded by: Jose Camacho — josecamacho@ugr.es
% last modification: 30/Jun/20.

function prepare_data(folder)
fname = dir ([folder ’/outx']);
obs_1 cell (1,length (fname));
b = importdata ([folder ’'/weights.dat’]);

weight= b.data;
var_l = strsplit(b.textdata{:},",");

x = zeros(length (fname) ,length(var_1));
for i=1:length (fname)

timestamp = strsplit (fname(i).name, output—");

timestamp = strsplit (timestamp{2},’.dat");

obs_1{i} = timestamp{1};

x(i,:) = load(strcat(folder,’/’,fname(i).name));
end

save (’parsed_data.mat’,’x’,’obs_1l’, var_1", “weight”)

ol Ef * GOBIERNO MINISTERIO
b "s'l DE ESPANA DE CIENCIA
pd Py E INNOVACION

G W N =

N

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

This function has as input the folder containing the output files of the FCParser (parsing_data)

and combines all the files ‘output_xxxx’ of the 60 minutes, obtaining 4 data elements in ‘parsed_data.m’:

e x : matrix with the values of the observations for each variable (60 observations x 142
features).

e obs_l: vector that identifies the labels of the observations (60 observations).
e var_l: vector that identifies the labels of the variables (142 variables).
e weight : vector with the value of the weight of each variable (142 variables).

Then, the file we just obtained is loaded (‘parser_data.mat”) with the 4 data elements (x, obs_|,
var_l and weight).

% Load the file which includes x, obs_1, var_l & weight
load ("parsed_data.mat”); %scalar structure

% Inicialization of some parameters
prep_x = 2; % autoscaling (the nature of the variables is different)
max_PCs = 10; % maximum number of PCs to take into account

In addition, other parameters to be used during the analysis are initialized:

e prep_x: type of preprocessing that is going to be used. We select number 2 as it is auto-
scaling (see explanation using ‘help preprocess2D’ in Octave). Alternatively, one may also
use 0 (no preprocessing) and 1 (mean-centering).

e max_PCs : maximum numbers of Principal Components to take into account.

2.5.2 Selection of the number of PCs (Principal Components)

The first step for the PCA analysis is to select the appropiate number of PCs to make the analysis.

%) Data Analysis — PCA (Principal Component Analysis)

% 1. Selection of the Principal Components (PC)

var_pca(x,1:max_PCs,prep_x); % We select 2 PCs despite 80% of residual variance
% For more detail , we should study more PCs

To do so, the function var_pca(x,pcs,prep)” of the MEDA Toolbox is used, which has as input : x
(matrix with observations and features), pcs (from 1 to the maximum number of pcs) and prep (type
of preprocessing).

In this case we select 2 PCs. Typically, this selection is complex, but a general rule of thumb is
to select the "knee" in the curve. For a more accurate analysis of the data, it should be redone
with more components or take into account the residuals, as we are leaving a lot of information
in it.

o ¥ GOBIERNO MINISTERIO
DE ESPANA DE CIENCIA
E INNOVACION

£3
(7]

N

W

&)

Advanced Networkmetrics:

Interpretable Machine Learning for Intelligent Communication Systems

2.5.3 Observations distribution (Scores)

% Residual Variance

0.9

0.8

0.7

0.6

0.5

0.4

ckf |

#PCs

Figure 8: Variability captured in terms of the number of PCs.

Then, the obtained scores are plotted to show the distribution of the observations, so that we
can identify the outliers. To do this we use 'scores_pca(x,pcs,test,prep,opt, label,classes)’, where:

e x : matrix with observations and features (parsed_data.x).

pcs : principal components taken into account (in this case, 2 pcs).

test : data set with the observations to be compared (to do testing of a dataset, we don’t want

this now).

prep : type of preprocessing (2 for auto-scaling).

opt : options for data plotting: binary code (type help scores_pca for more information).

label : name of the observations (we don’t add them because we would not be able to see the
dots well. Add "parsed_data.obs_l’ to see them).

o classes : groups for different visualization (used to compare different groups, not needed here).

% Step 2: observations distribution and relationships,

scores_pca(x,1:2,[],prep_x,1);

outliers detection

% we can see the distribution where almost all of them are similar

% obs 26 and 60 are outliers,

should be studied with more detail

In the scores we can see that almost all the observations are similar and are around the axis.
However, there are two observations that are far from this trend (outliers 26 and 60). To de-
termine why they are different from the rest we must look at the loadings corresponding to the
distribution of the variables and study both in detail.

o % GOBIERNO MINISTERIO
DE ESPANA DE CIENCIA

£3
(7]

E INNOVACION

W N =

SIS

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

8 . . ; , . :
[
6 |
6 : ' 10 -
-4 !
8
!
7
4r ’ 2 1
N2
_ 31 14
32 - o
L st - : 3 _gd 4
o 1:f ."
[} 30 196
1 .
% 25 43 " 35 53
T T R
g 23. !
s 27" ig T 7 85
26 . . .y 21
T g0, Wher?
oL 45 19,.7% . 34 49 7
. 20 29 | ’ 59
28 24 4
1
4 F | = 58 .
| 32 60
1
1
< . . . : . .
-20 15 10 5 0 5 10 15

Scores PC 1 (17%)

Figure 9: Scores (distribution of observations).

2.54 Loadings distribution (Loading)

As mentioned above, we now need to look at the distribution of the variables to determine the
behavior of the outliers in the scores. For this we will use "loadings_pca(x,pcs,prep,opt,label classes)’
which has the same inputs that we have used in the function ‘scores_pca()’.

%) Step 3: variables distribution and relationships, selection of variables

loadings_pca(x,1:2,prep_x,1);
% too many variables to identify patterns, but can aproximate variables affecting
% look at bottom left & right. Should be studied with more detail

04 . : v . I :
1
i
136 |
03 F ! g
49
. 1
1
100 H 28
02k . 121 ! . 88 4
Eg 108 « 125 |
) 137 H 73
o 7 - 51
%) | 48
& o1 126 " n 1
<) . 81
= 14 N W
3 b = - b 102
. . s
e |) SO, NP B —— R bt St T T -
. . 74, b
' « " (. 77
! Ve di
. L
01k) . 133 \I 104 4
106 67 H
* 1
1
123 g | 40
02 . . - .) \
-0.25 0.2 0.15 0.1 -0.05 0 0.05 0.1
64

Loadipgs PC 1 (17%)
Figure 10: Loadings (distribution of variables).

There are too many variables to determine a pattern, but we can more or less see the distribution
where as an intuition we can assume that the variables that are bottom left will be those that

ol Ef * GOBIERNO MINISTERIO

S 73 DEESPANA DECENCIA

f v EINNOVACION
a

N

®

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

affect outlier 26 and those that are bottom right will be for the case of outlier 60.
To check this, we need to do a more detailed study to find out the variables that are affecting
these outliers.

2.5.5 Outliers investigation with oMEDA

For a more detailed study, we will compare the values of the variables by placing positive
and negative weights according to their distribution in the observations. To do this, we use
‘omeda_pca(x,pcs,test, dummy,prep,opt,label classes)” where all the inputs are the same as the func-
tions used before ‘scores_pca()” and ‘loadings_pca()’, except dummy.

Dummy is a variable containing weights for the observations to be compared, and 0 for the rest
of the observations that are not to be taken into account. So, the weight has been set to -1 for
the group of centered points, 0 for those too close or too far away and 1 for the weight of the
outlier.

% Step 4: investigate differences with outliers, oMEDA and line plots of outliers

o

o outlier 26
dummy = —ones (60,1) ;

5|dummy ([45,28,24,25,31,59,60])= 0;

dummy (26) =1;

omeda_pca(x,1:2,x,dummy, prep_x,111,var_1);
% outlier 60

dummy = —ones (60,1);

dummy ([45,28,24,25,31,59,26])= 0;

dummy (60)= 1;

omeda_pca(x,1:2,x,dummy, prep_x,111,var_1);

e Qutlier 26.

In these graphs we have to pay attention to the peaks, because if they are very high they have
an unusual value and different behavior to the group.

We look at the identifying numbers of the peaks and save them in a vector with the names of
the most significant variables. We also save the timestamp where we have found the anomaly.

%/ Step 5.1: identify variables affecting outliers
% look at the peaks (positives in this case)

31% outlier 26

features = [var_1(107) var_1(122) var_1(110) var_l1(45) var_1(35)]

s| timestamps = {’2016—04—-13 03:25:00 "}

% save it to use fcdeparsing
save (’deparsing_input’,’features’, timestamps’)

In this case, the variables that make the outlier different from the rest are : “dport_register’,
’srctos_other’, “protocol_udp’, ‘sport_oracle’ and ‘sport_smtp_ssl’ and the timestamp is "2016-
04-13 03:25:00". We should look at what they mean in the netflow file and investigate if it is
relationed with any type of attack.

o % GOBIERNO MINISTERIO
DE ESPANA DE CIENCIA
E INNOVACION

B fJ

10

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

25 T T T T T T

20 1

20 40 60 80 100 120 140

Figure 11: oMEDA for outlier 26.

e Qutlier 60.

In this case we also have negative peaks so we will also look at them to see if they are related to
the positive ones.

We do the same process as we have done with the previous outlier. We identify the peaks and
save the positive ones and the timestamp, in order to study them later with the FCParser.

% Step 5.2: identify variables affecting outliers

% outlier 60

features = [var_1(65) var_1(14) var_1(67) var_1(107)var_1(83)]
min_60 = [var_l(61) var_1(84) var_1(101) var_1(10) var_1(71)]
timestamps = {’2016—-04—-13 03:59:00 "}

% save it to use fcdeparsing
save (’deparsing_input_60’, features’, timestamps”)

In this case, the variables that make the outlier different from the rest are :

e Positive peaks : ‘dport_ftp_data’, 'sport_ftp_data’, "dport_ssh’, "dport_register’ and
‘dport_https’.

e Negative peaks : "dport_discard’, ‘"dport_mds’, "dport_metasploit’, 'sport_discard” and
‘dport_bootp’.

The timestamp is '2016-04-13 03:59:00". We should also look at what they mean in the netflow
file and investigate if they are relationed between them and if it is relationed with any type of
attack too.

p¥ ¥ GOBERNO MINISTERIO
S0 DEESPANA DECIENCIA

d 2 EINNOVACION
a

11

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

20 40 60 80 100 120 140

Figure 12: oMEDA for outlier 60.

2.6 Deparsing data with FCParser

Finally, we are going to identify the features in the capture, so that we can study in detail what
is happening, whether it is a bug or a real attack. For this we are going to make use of the
FCParser tool, in this case the deparsing one.

The way and syntax of executing it is similar to the one used in the section 2.4. The command
is python3 bin/fcdeparser.py example/config/configuration.yaml example/deparsing_input ,
where we have to edit the files “configuration.yaml’ and ‘deparsing_input. We will have one for
each outlier (‘deparsing_input” and ‘deparsing_input_60").

= deparsing_input X | = deparsing_input_60 X
1 features:
2 {
3 [1,1] = dport register
4 [1,2] = srctos_other
5 [1,3] = protocol_udp
5 [1,4] = sport_oracle
7 [1,5] = sport_smtp ssl
¥
16 timestamps:
11 {
12 [1,1] = 2016-04-13 ©3:25:00
13 |}

Figure 13: Deparsing input for outlier 26

We add to the configuration file, the deparsing capture and the directory where we are going
to save the output.

,x; = GOBIERNO MINISTERIO
-q DE ESPANA DE CIENCIA
E INNOVACION

° 12

1
wie.

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

£ configuration.yaml X

config/netflow.yaml

nf 1384 34.csv
nf_13@4_34.csv |

50 no aggregation is made. So, analyzed by timestamp

dir: Earsingimutput
stats: stats.log

: dégar‘singioutput
threshold: 18

Figure 14: Configuration for deparsing

We go to the terminal and execute both of them, changing the deparsing directory:

t~fexampled python3 /FCParser/bin/fcdeparser.py config/configuration.yaml deparsing_input
* Threshold: 18 log entries per data source

* Time sampling window: 1 minutes

** Creating output directory deparsing output/

** Defining default log file: 'stats.log’

GEMNERAL CONFIGURATION FILE... OK

LOADING DATA SOURCES CONFIGURATION FILES...

* File: config/netflow.yaml

* Loaded Deparsing input file.
- Features to search: ['dport_register', 'srctos_other', 'protocol udp’, "sport_oracle’, 'sport_smip ssl']

Loading 'netflow’ data source...

Number
Number
Number
Number
Number

of logs with 5
of logs with 4
of logs with 32
of logs with 2
of logs with 1

matched features:
matched features:
matched features:

matched features
matched features

Total number of logs in file: 5537639
Considering the feature counters and a
Mote that the output will be generated

283609
o 46912
o 41898

threshold of 18 log entries, we will extract logs with »=3 matched features
in different files according to their number of features

Elapsed: 2 mins, 17 secs

Search finished:

Elapsed: 2 mins, 17 secs

Structured logs found: 28369 out of 5537639
Unstructured logs found: 8 out of 8

Figure 15: Deparsing for outlier 26

As we can see, for the outlier 26, we have found out many logs that match the features we have
selected for the input. It has saved the logs that matches 3 features. If we go to the specified
folder, we can see them:

Then, we do the same with the outlier 60, obtaining in this case that the features aren’t matched.
We can also see them in the output directory.

Finally, we should study this logs deeply, in order to confirm that there have been real attacks
or it was just a fail in the network.

-

7~ GOBIERNO MINISTERIO
"> DE ESPANA DE CIENCIA
i E INNOVACION

=

13

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

Z File Edit View Run Kernel Tabs Settings Help
- + c = deparsing_input X | = deparsing_input_60 X | [exampleipynb X | B example_daas@efcf5d555a X utput_netflow_3feat x |+
1 2016-04-13 ©3:25:01,2016-04-13 -

Filter files by name ‘
‘ s 2 03:25:01,0.000,209.88.54.153,42.219.155.65,53,5896,UDP, . . .A. ...,0,72,1,301,0,0,3,6,0,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00:00:00: 00:00,00: 00

100:00:00:00,00:00:00:00:00:00,00:00:00:00:00:00,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0, 0.000, ©.000,
0.000,0.0.0.0,0/0,2,1970-01-01 00:00:00.000

o

M/ example / deparsing output /

o Name - Last Modified 2
= 3 2016-04-13 03:25:02,2016-04-13
03:25:02,0.000,246.46.178.115,42.219.153.89,40017, 8823, UDP, . . .A. .. .,0,72,1,48,0,0,3,6,0,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00:00: 00:00: 00, 00
DO statslog aday ago :100:00:00:00:00,00:00:00:00:90:00,00:00:00:00:00:00,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0, ©.000, 0.000
» 0.000,0.0.0.0,0/0,2,1970-01-01 00:00:00.000
2
5 2016-04-13 03:25:03,2016-04-13
03:25:03,0.000,193.,27.165.14,42,219,153.89,40036,42192,UDP, . . .A. . ..,9,40,1,936,0,0,3,6,9,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00: 00:00:00: 00,0
©:00:00:00:00:00,00:00:00:00:00:00,00:00:00:00:00:00,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0, ©.000, 0.000,

0.000,0.0.0.0,0/0,2,1970-01-01 00:00:00.000

7 2016-04-13 03:25:03,2016-04-13
03:25:03,0.000,246.46.178.107,42.219.155.59,40004, 37656, UDP, . . .A. .. .,0,72,1,48,0,0,3,6,0,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00: 00:00:00:00,0
©:00:00:00:00:00,00:00:00:00:00:00,00:00:00:00:00:00,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0, 0.000, 0.000,
0.000,0.0.0.0,0/0,2,1970-01-01 00:00:00.000

9 2016-04-13 03:25:03,2016-04-13
03:25:03,0.000,106.150.66.110,42.219.153.89,40034, 42192, UDP, .. .A. ... ,0,40,1,49,0,0,3,6,0,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00: 00:00:00: 00,0
©:00:00:00:00:00,00:00:00:00:00:00,00:00:00:00:00:00,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0, 0.000, 0.000,
0.000,0.0.0.0,0/0,2,1970-01-01 00:00:00.000

11 2016-64-13 03:25:03,2016-04-13

03:25:03,0.000,199.7.218.224,42.219.153.89,43864,42192,UDP, . . .A. ...,0,72,1,71,0,0,3,6,0,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00:00: 00:00: 00, 00
100:00:00:00:00,00:00:00:00:00:00,00:00:00:00:00:00,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0,0-0-0, ©.000, 0.000,
0.000,0.0.0.0,0/0,2,1970-01-01 00:00:00.000

12

13 2016-04-13 03:25:03,2016-04-13

03:25:03,0.000,106.152.20.90,42.219.153.89,40004,42192,UDP, . . .A. . ..,0,40,1,49,0,0,3,6,0,0,0,0,0,0,0.0.0.0,0.0.0.0,0,0,00:00:00:00:00:00,00 -

Figure 16: Output file with 3 matched features for outlier 26

1~/example$ python3 /FCParser/bin/fcdeparser.py config/configuration.yaml deparsing_input_6@
* Threshold: 18 log entries per data source
* Time sampling window: 1 minutes
** creating output directory deparsing_output_6e/
** pefining default log file: 'stats.log’
GENERAL CONFIGURATION FILE... OK
LOADING DATA SOURCES CONFIGURATION FILES...
* File: config/netflow.yaml

1 FCdeparser... Run p

ia in more detai

* Loaded Deparsing input file.
- Features to search: ['dport_ftp_data', 'sport_ftp_data', ‘dport_ssh', 'dport_register', ‘dport_https']

Loading 'netflow' data source...
Number of logs with 5 matched features:
Number of logs with 4 matched features:
Number of logs with 3 matched features:
Number of logs with 2 matched features:
Number of logs with 1 matched features: 29674

Total number of logs in file: 5537@39

Considering the feature counters and a threshold of 18 log entries, we will extract logs with »>=1 matched features
Note that the output will be generated in different files according to their number of features

Elapsed: 1 mins, 43 secs

2000

Figure 17: Deparsing for outlier 60

ol Ef * GOBIERNO MINISTERIO
b "s'l DE ESPANA DE CIENCIA
E INNOVACION

Bt 14

Advanced Networkmetrics:
Interpretable Machine Learning for Intelligent Communication Systems

References

[1] ANIMaLICoS. Advanced networkmetrics: Interpretable machine learning for intelligent
communication systems. https://www.codas.ugr.es/animalicos/en.

[2] Feature as a counter parser for networkmetrics. Available online: https://github.com/
josecamachop/FCParser.

[3] Multivariate exploratory data analysis (meda) toolbox. Available online: https://github.
com/josecamachop/MEDA-Toolbox.

[4] Gabriel Macid Ferndndez, José Camacho, Roberto Magéan-Carrién, Pedro Garcia-Teodoro,
Roberto Theron, Ugr’16: anew dataset for the evaluation of cyclostationarity-based network
IDSs, In Computers Security, 2017.

GOBIERNO MINISTERIO
DE ESPANA DE CIENCIA
E INNOVACION

15

https://www.codas.ugr.es/animalicos/en
https://github.com/josecamachop/FCParser
https://github.com/josecamachop/FCParser
https://github.com/josecamachop/MEDA-Toolbox
https://github.com/josecamachop/MEDA-Toolbox

	Introduction
	Server Architecture

	Example of DAaaS usage
	Server access
	Dataset
	Jupyter Notebook interface
	Parsing data with FCParser
	Data analysis with Octave and MEDA Toolbox
	Data preparation and initialization
	Selection of the number of PCs (Principal Components)
	Observations distribution (Scores)
	Loadings distribution (Loading)
	Outliers investigation with oMEDA

	Deparsing data with FCParser

