ANOVA Simultaneous Component Analysis for the Efficient Exploration of Massive Network Traffic Data

J. Camacho

Computational Data Science Laboratory (CoDaS Lab) Research Centre for Information and Communication Technologies (CITIC-UGR) University of Granada, Spain

josecamacho@ugr.es

Topic: Providing network observability is not only a matter of devising the best data measurement techniques (e.g., the network telemetry framework in RFC9232), but also of properly engineering good practices for data visualization, exploration, and understanding

Contribution: In this poster, we extend ANOVA Simultaneous Component Analysis (ASCA) [1] for the visualization of network Big Data

Results: We provide insights into the massive and complex Netmob 2023 Data Challenge

The **Netmob Data** [2,3] includes 77 days of traffic generated by 68 popular mobile services, in upload and download direction, geo-referenced over 20 metropolitan areas in France in 2019

The data includes more than 870,000 high-resolution regular tiles of 100×100 m2 each and a temporal resolution of 15 minutes

Data is massive and difficult to visualize and understand in terms of spatio-temporal patterns

the community

ASCA is a combination of Analysis of Variance (ANOVA) and Principal Component Analysis (PCA)

i) Factorizes the data according to a set of factors, like time or location, allowing us to untangle temporal and spatial patterns

ii) Performs statistical inference

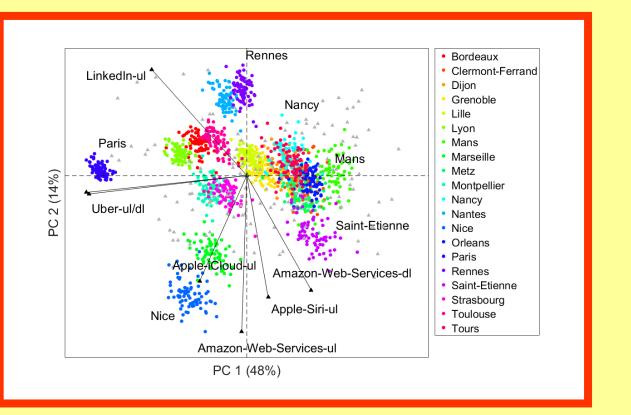
iii) Allows visualizations of the patterns with PCA plots

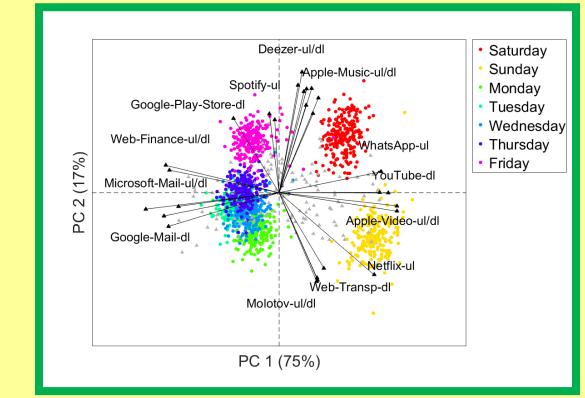
Data Analysis Workflow Location 1 🖌 MEDA Time 1 Time ... 1. We organize the traffic statistics of the Netmob Data in Location L ... Services Time 1 3-way tensors of **Space x Time x Service** Location 1 Space ... MEDA ... Location L 2. We unfold the spatio-temporal tensor in a matrix along Location 1 the service mode PLS PCA Time T **ASCA** Location L 3. We use our own implementation of ASCA in the MEDA MathWorks Toolbox [4], a software package in Matlab available to

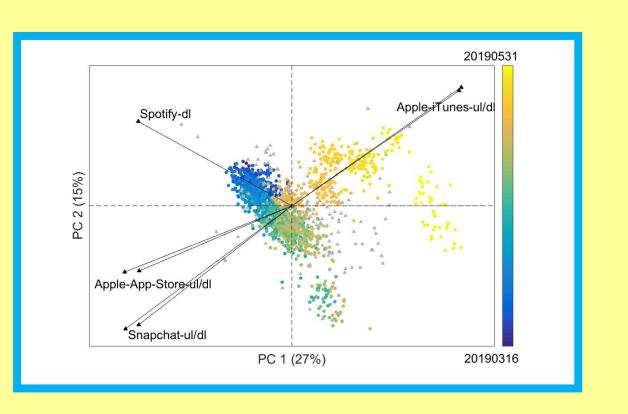
(1)

High-level spatio-temporal ASCA model

We aggregate traffic into a high-level spatio-temporal tensor of


77 days x 20 cities x 136 services


We apply ASCA following the workflow and with the model below


$$X = X_{City} + X_{Weekday} + X_{Date} + E$$

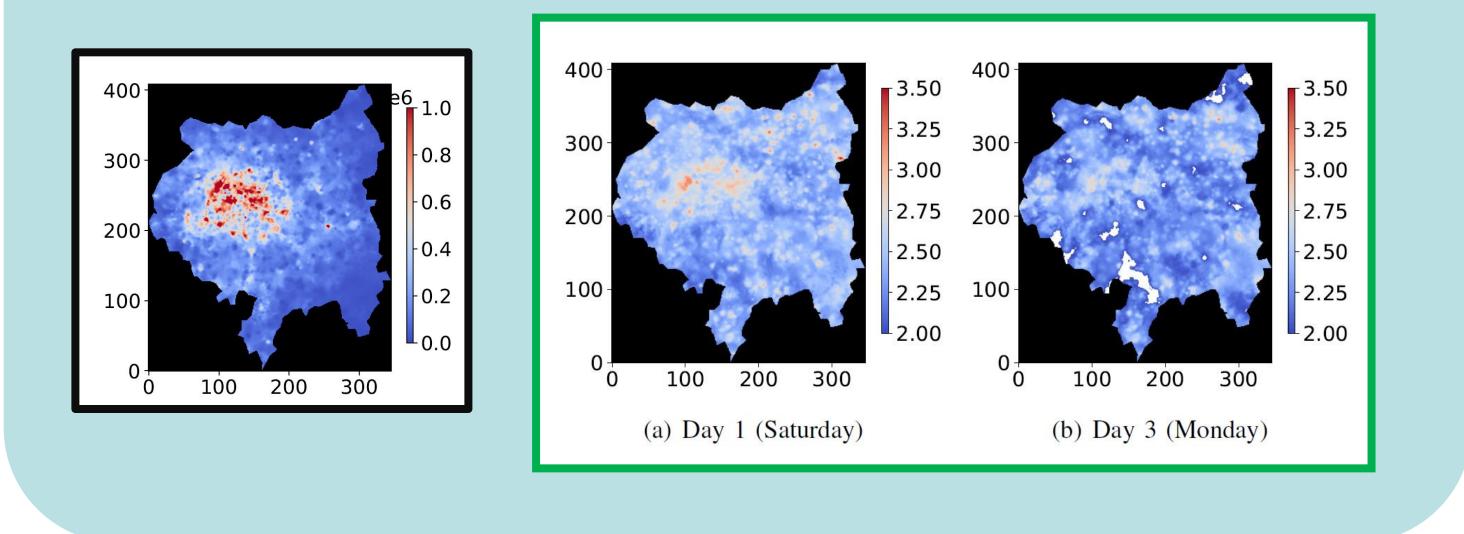
All factors are statistically significant

Weekday is the most important factor affecting the traffic, followed by City (3/5) and Date (1/8)

City-level Big Data ASCA model

(2)

We build a different tensor per city, e.g., for Paris


77 days x 6M tiles x 136 services

For the analysis, we contribute a **new extension of ASCA to Big Data** using Cross-product matrices and Clustering, following previous work [5]

$$X = X_{Row} + X_{Column} + X_{Weekday} + X_{Date} + E$$

Weekday is the most important factor in all cities. Spatio-temporal patters differ across cities.

In Paris, we find selected services with relevant spatial (e.g., **Uber upload**, left) and/or temporal (e.g., **Instagram download**, right) patterns

Spatio-temporal patters for specific services are discovered in the plots (check the paper for details)

The capability of ASCA to untangle the effect of different factors in the data was leveraged to investigate spatio-temporal patterns of traffic for the first time. We demonstrate this capability with the Netmob 2023 data, for which we had to develop the first Big Data extension of ASCA

[1] Smilde et al., "Anova-simultaneous component analysis (asca): a new tool for analyzing designed metabolomics data," Bioinformatics, vol. 21, no. 13, pp. 3043–3048, 2005. [2] Netmob 2023 Data Challenge. <u>https://netmob2023challenge.networks.imdea.org</u> (Last Access 24th April, 2024)

[3] Martínez-Durive et al. 2023. The netmob23 dataset: A high-resolution multi-region service-level mobile data traffic cartography. arXiv preprint arXiv:2305.06933.

[4] "GitHub repository for the MEDA Toolbox," <u>https://github.com/codaslab/MEDA-Toolbox</u> (Last Access 24th April, 2024)

[5] Camacho. "Visualizing Big data with Compressed Score Plots: Approach and Research Challenges." Chemometrics and Intelligent Laboratory Systems, vol. 135, pp. 110–125, 2014.

ACKNOWLEDGEMENTS: This work was supported by the Agencia Estatal de Investigación in Spain, MCIN/AEI/ 10.13039/501100011033, grant No PID2020-113462RB-I00.

(3)