Simulated Power Curves in ASCA

Topics in Chemometrics

2023

JOSÉ CAMACHO JOSECAMACHO@UGR.ES COMPUTATIONAL DATA SCIENCE LAB

Project *PID2020-113462RB-I00* funded by:

Context : Multi-way (multi-factor) clinical trial

Baseline Treatment Post-T

Biomarker discovery: Statistical inference X = 1m + Xp + Xt + Xi + Xpt + E

$$F = \frac{SS_P}{SS_E}$$

So many possibilities...

• Clinical trial ...

... longitudinal, cross-over, multi-center, sequential, observational, experimental, randomized, prospective, retrospective ...

- Factors ...
 - ... fixed, random
- Relationships among factors ...
 - ... crossed, nested, interactions
- Complexities ...

... unbalanced, distributions, outliers, missing data ...

Jaremek, Adam, et al. *Frontiers in Cell and Developmental Biology* 9 (2021): 674162.

ANOVA with MULTIVARIATE RESPONSE

$X - \mathbf{1} \cdot \boldsymbol{m} = \boldsymbol{b}_A \boldsymbol{F}_A + \boldsymbol{b}_B \boldsymbol{F}_B + \boldsymbol{b}_{AB} \boldsymbol{F}_{AB} + \boldsymbol{E}$

1.3					2.4
2.0					
2.1					
3.3					
4.7					
2.8					
1.3					
1.0					
0.9					
3.6					
<u>4</u> 1	•••				
00	•••				 २ २
0.9	•••	•••	•••	•••	5.5

ANOVA with MULTIVARIATE RESPONSE

$$X - \mathbf{1} \cdot \boldsymbol{m} = \boldsymbol{b}_A \boldsymbol{F}_A + \boldsymbol{b}_B \boldsymbol{F}_B + \boldsymbol{b}_{AB} \boldsymbol{F}_{AB} + \boldsymbol{E}_{AB} \boldsymbol{F}_{AB}$$

General Lineal Model

$$b = argmin ||X - m - bF||_2$$

$$b = (F' * F)^{-1}F' \cdot (X - m)$$

 $X-1\cdot m=X_A+X_B+X_{AB}+E$

MULTIVARIATE EXTENSIONS TO ANOVA

ASCA example: Wheat dataset

MEDA Toolbox

https://github.com/CoDaSLab/MEDA-Toolbox

ASCA example

MEDA Toolbox

Source	SumSq	PercSumSq	df	MeanSq	F	Pvalue
'Mean'	61649	84.23	1	61649	NaN	NaN
'Factor 1'	2013.4	2.7508	4	503.34	13.87	0.000999
'Factor 2'	1366.8	1.8674	3	455.59	12.554	0.000999
'Factor 3'	1230.4	1.6811	1	1230.4	33.904	0.000999
'Residuals'	6931.5	9.4704	191	36.291	NaN	NaN
'Total'	73191	100	200	365.96	NaN	NaN

MATLAB MathWorks

$$X - 1 \cdot m = X_{time} + X_{trait} + X_{tre} + E$$

https://github.com/CoDaSLab/MEDA-Toolbox

ASCA example

$X - 1 \cdot m = X_{time} + X_{trait} + X_{tre} + E$

https://github.com/CoDaSLab/MEDA-Toolbox

Power Analysis: Sample Size

• Define effect size

- Estimate response variance
- Define error probability
 - Alpha: false positive
 (0.05 or 0.01)
 - Beta: 1 false negative
 (0.8)

• Estimate RELATIVE statistical POWER of variants of ...

A specific clinical trial / DOE / nested vs crossed / fixed vs random:

$$X - \mathbf{1} \cdot \mathbf{m} = X_{time} + X_{trait} + X_{tre} + \mathbf{E}$$

$$Vs$$

$$X - \mathbf{1} \cdot \mathbf{m} = X_{time} + X_{tre} + \mathbf{E}$$

$$Vs$$

$$X - 1 \cdot m = X_{time} + \frac{X_{tre}}{X_{tre}} + X_{time\ x\ tre} + E$$

• Estimate RELATIVE statistical POWER of variants of ...

A specific test and/or test statistic (related to the previous):

Journal of Statistical Computation and Simulation, 2003, Vol. 73(2), pp. 85–113

PERMUTATION TESTS FOR MULTI-FACTORIAL ANALYSIS OF VARIANCE

MARTI J. ANDERSON^{a,*} and CAJO J. F. TER BRAAK^{b,†}

^aCentre for Research on Ecological Impacts of Coastal Cities, Marine Ecology Laboratories, A11, University of Sydney, NSW, 2006, Australia; ^bBiometris, Wageningen University and Research Centre, Box 100, 6700 AC, Wageningen, The Netherlands

(Received 1 February 2001; In final form 13 August 2002)

• Estimate RELATIVE statistical POWER of variants of ...

A specific data preprocessing choice:

Missing data, transformation, outlier detection, ...

• Materials: https://github.com/josecamachop/PowerCurvesASCA

Define variants

- Define
 - Alpha: false positive
 (0.05 or 0.01)
 - Increasing effect size
 (null to S)
- Design the simulation *

Example I: Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach

X = 1m + A + B + C(A) + AB + E

Example I: Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach

• Motivation: Our first results with real data were unexpectedly significant

Steps:

- Variants: 15+ variants in DoE and statistical tests

- alpha = 0.05

- effect size from 0 to 0.5

• Curves computed: X = 1m + A + B + C(A) + AB + E

Example	I. Predicting dunamic respo	nse to
neoadjuvant e	effectS = 0:0.05:0.5;	er: a novel
• Motivation: Our fi	<pre>Xpac = randn(length(up),length(var_l)); Xpac = Xpac/norm(Xpac); Xtime = randn(length(ut),length(var_l)); Xtime = Xtime/norm(Xtime); for i = 1:length(obs_l)</pre>	
Steps:	<pre>if strcmp(class{i}, 'R') Xstruct(i,:) = Xpac(vp(i),:) + Xtime(vt(i),:);</pre>	
- Variants: 15	<pre>else Xstruct(i,:) = Xpac(vp(i),:); end</pre>	
- alpha = 0.05	end	
- effect size	<pre>Xnoise = randn(length(obs_1),length(var_1)); Xnoise = Xnoise/norm(Xnoise);</pre>	
- Simulation:	for a = 1:length(effectS) X = 1m + A + B + Make a blend	C(A) + <mark>AB</mark> + E
	<pre>Xm = effectS(a)*Xstruct + (1-effectS(a))*Xnoise;</pre>	

Permutation Tests for ASCA in Multivariate Longitudinal Intervention Studies

X = 1m + A + B + C(A) + AB + E

Example II: Transformations and ouliers

 Motivation: We obtained inconsistent results after outliers isolation and several transformations

Steps:

- Variants: Raw data, Box-Cox, Rank, Raw+Rank
- alpha = 0.05
- effect size from 0 to 0.05
- Curves computed: residulals distributed as normal, uniform, exp³ and normal with an outlier

Example II: Transformations and ouliers

CONCLUSION

- ASCA is a really interesting and competitive method for multivariate analysis in designed experiments
- BUT it is still under development
- There are plenty of problems of interest that deserve research
- Simulated Power Curves are a simulation framework to explore these problems

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations by Stories Please keep this slide for attribution